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An approximate theory is presented in which the electronic structure of a polyatomic molecule is expressed 
in terms of electronic structures for all possible diatomic and monatomic fragments which compose it. The 
primary purposes of the theory are: (1) to predict stabilities of polyatomic molecules; (2) to provide under
standing of deviations from strict additivity of bond energies; and (3) to give semiempirical explanation for 
nonbonded interactions. The general approach bears a strong resemblance to the well-known Slater-Eyring 
semiempirical valence-bond method, except that in the new theory there appear no calibration parameters, 
no exchange integrals, and no coulomb integrals, but only overlap integrals and experimental diatomic and 
monatomic energies. Problems involving multiple exchanges do not occur in the new treatment. An appli
cation to the right-angled conformation of H2O gives an energy of atomization in essential agreement with ex
periment. For H2O, the O-H and H - H bond energies are calculated to be 120.4 and 11.2 kcal., respectively, 
and the O-atom promotional energy is 21.0 kcal. These may be compared with the calculated O-H bond 
energy 118 kcal. and O-atom promotional energy 11 kcal. for trie OH radical. 

Introduction 
One main obstacle on the road to predicting quantum 

mechanically and interpreting molecular atomization 
energies is the profound effect of electron correlation, 
especially of the intraatomic kind, on total electronic 
energy. Really theoretical accounting of this correla
tion energy requires a very large set of configurational 
wave functions in the conventional variational calcula
tion. In 1951, Moffitt proposed a possible way to 
allow for intraatomic correlation in molecular calcula
tions by admitting experimental energies of atomic and 
ionic states in a particular way; this new approach was 
called the atoms-in-molecules (AIM) method.2 

In the AIM method, eigenfunctions for electronic 
states of the separated atoms are used to construct the 
molecular basis wave functions. Alternatively, a 
polyatomic molecule might be visualized as formed by 
interaction of diatomic molecules (and at least one atom, 
for the odd-atom case). Since atoms probably are 
perturbed more than diatomics on polyatomic molecule 
formation, an immediate and conceivably improved 
extension of the AIM method would be one which 
employed electronic states of separated diatomics 
(and those of one atom, if necessary) for construction of 
the unperturbed wave functions. This particular ap
proach to polyatomic structure is, however, not the 
one to be developed in this paper. 

In the next section we describe a theory in which the 
electronic structure of a polyatomic molecule is repre
sented conventionally by a resonance of valence-bond 
structures. The total hamiltonian operator is cast 
into a form which contains only hamiltonians for all 
possible diatomic and monatomic fragments in the 
polyatomic, but no interaction operators. If good 
valence-bond approximations of the diatomic and 
monatomic ground and excited state eigenfunctions are 
available, it becomes possible to evaluate the general 
energy matrix for the polyatomic in terms of the over
lap matrix (for the starting canonical set of polyatomic 
structures) and experimental diatomic and monatomic 
energies. The general approach bears a strong resem
blance to the well-known semiempirical valence-bond 
method,3 except that in the new theory there appear no 
exchange integrals, no coulomb integrals, and no cali
bration parameters. 

In the next section, also, it is shown that diatomics-
in-molecules theory leads straightforwardly to a natural 

(1) Supported in part by a grant from the National Science Foundation. 
Paper presented at the 144th National Meeting of the American Chemical 
Society, Los Angeles, Calif., April S, 1963. 

(2) W. Moffitt, Proc. Roy. Soc. (London), A210, 245 (1951). 
(3) H. Eyring and M. Polanyi, Z. physic. Chem., B12, 279 (1931); J. O. 

Hirschfelder, H. Eyring, and B. Toplcy, J. Chem. Phys., 4, 170 (1936); 
J. C. Slater, Phys. Rev., 38, 1109 (1931); J. H. Van Vleck and P. C. Cross, 
J. Chem. Phys., 1, 357 (1934); H. Voge, ibid., 4, 581 (1936). 

expression for the atomization energy of a polyatomic 
as a sum over all bond energies less the total atomic 
promotional energy. 

The theory is applied to right-angled H2O in the last 
section. 

Theory 
General.—We begin by considering valence-bond 

structure wave functions for a given polyatomic system 

*n = E ^rD1 (1 ) 
r 

The Dr represent determinantal wave functions (anti-
symmetrized products of atomic spin orbitals), and the 
bm are coefficients chosen so that (1) ^ n is antisym
metric with respect to interchange of spin factors of 
orbitals forming an electron-pair, (2) SFn is the proper 
eigenfunction of S2 (square of total spin angular momen
tum) and S2 (component of 5 upon z-axis), and (3) ^ n 
is normalized for infinite separation of the atoms.4 

We suppose that a polyatomic molecule can be 
represented by a resonance of two or more valence-bond 
canonical structures 1Pn like eq. 1. 

* = Sa n ^ n (2) 

In order to determine the optimum coefficients an 
for which the expectation value of the molecular 
energy W is minimized,5 one must first solve the secular 
determinant \Hnm — SnmW\ = 0, in which 

Snm = / * « W T , Hvm = / * » f f * „ d r (3) 

We may write ^ m = A\pm, where A is the total anti-
symmetrization operator and \pm is a linear combination 
of simple products of atomic spin orbitals; we shall 
refer to i/<m as the primitive function for the rath struc
ture.6 Now, a typical energy matrix element can be 
written 

tfnm = f-HnAH^dT (4) 

since the operators H and A commute. 
We next consider a general atoms-in-molecules 

expression of the total Hamiltonian operator for the 
polyatomic molecule 

H = S HP + £ Z VPQ (5 ) 
P P Q > P 

Each HY contains all kinetic energy operators and all 
intraatomic potential energy terms in H which depend 

(4) All conditions but the first are optional in valence-bond theory; 
condition 2 simplifies calculations significantly, 

(5) The functions ^ n depend parametrically upon the relative positions 
of the nuclei under the Born-Oppenheimer approximation; W is minimized 
for fixed positions of the nuclei. 

(6) Electrons are assigned to the atomic spin orbitals in a serial manner; 
electrons 1 to WA to atomic spin orbitals associated with atom A, the next 
set of electrons to atom B, etc. Such electron assignments may differ from 
one primitive function to another because of different tonicities of the associ
ated valence-bond structures. 
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exclusively upon the coordinates of electrons assigned 
originally to atom P and not upon the coordinates of 
any nuclei other than nucleus P ; F P Q contains all inter
atomic interaction potential energy terms in H depend
ing upon electron and nuclear coordinates common to 
atom P and atom Q only. There are, of course, many 
different ways to partit ion H in this way depending upon 
the original assignment of electron numbers to the 
various atoms. The atoms-in-molecules form of H will 
be determined in each particular energy matrix ele
ment Ham by the assignment of electrons within the 
primitive function \pm upon which H is set to operate 
(eq. 4 and footnote 6). 

The hamiltonian i?pQ for a diatomic molecule PQ, 
again written in its atoms-in-molecules form, is 

#PQ = HP + Hq + VPQ (6) 

If this expression is solved for F P Q and then substituted 
into eq. 5, we obtain 

H= 2 / i , + E Y. '11,Q-HT-HQ) ( 7 ) 

P Q < P 

= E E ^PQ- (N - 2) E H? (8) 
P Q > P P 

where AT is the total number of atoms in the polyatomic. 
We shall refer to each of these forms of H as the 
diatomics-in-molecules (DIMj Hamiltonian; they con
tain explicitly no "interaction" operators bu t only 
hamiltonians for the constituent diatomic molecules 
and atoms. The total energy of a polyatomic is ex
pressed as the sum of energies of all possible diatomic 
fragments (for each fragment, the energy of "both 
atoms in the fragment" as well as their interaction 
energy is implicit) minus the sum of a tom energies as 
many times as necessary to correct for their multiple 
inclusion in the diatomic fragment energy sum. 

If eq. 8 is substituted into eq. 4, we obtain 

ffnm = E E ff-»PQ - (A' - 2) E H™ (9) 
P Q > P P 

where 

#nmPQ = /VnAHpQ^dT (10) 
#nmP = fVnA ffp^dr (11) 

For n = m, i?nnP Q /5nn may be regarded as the valence 
state energy of the diatomic molecule PQ in the poly
atomic molecule as described by the single valence-bond 
structure ^ n ; Hnn

p/Sun is the valence state energy of 
the a tom P in the polyatomic as described by struc
ture ^ n . 7 8 

I t must be noted at this point tha t the matrices9 

(HPQ) and (Hp) are not separately hermitian, and 
indeed are not fully independent. Since (H) is 
hermitian, (H) — (H)+, and thus 

E E K-H^) - C ^ ) + J - (A7 - 2) E <HJ") -
P Q > P P 

(H p)+] = 0 (12) 
We may rewrite eq. 9 in the form 

ff„m = E E # - ? e - (A7 - 2) E R™f (13) 
P Q > P P 

where 
i?»mPQ = 1A(Hnn,^ + Hmn

p«) (14) 
#.mP = 1MH^ + HmJ) (15) 

There is now no necessary relation between the ele
ments of what we may call the diatomic valence state 
energy matrices ^HPQ) and atomic valence state 
energy matrices (Hp). Both are hermitian, and both 
are defined uniquely in any representation which 

(7) A. L. Companion and F. O. Ellison, / . Chem. Phys., 28, 1 (1958). 
(8) F. O. Ellison, ibid., 36, 3107 (1962). 
(9) The matrix (i?P Q) , for example, is that matrix the elements of which 

are H D m
p «. 

may be constructed linearly from our set of canonical 
valence-bond structures ^ n

1 0 

Equation 13 is fundamental in the method of 
diatomics in molecules. We have partitioned the 
general energy matrix element Hnm into parts cor
responding to independent contributions from each 
diatomic and monatomic fragment. No approxima
tions have been made thus far in the theory. Any 
error resulting in applications of this first portion of the 
method can be at tr ibuted to the use of a limited set of 
canonical structures (eq. 1 and 2); this restriction is 
common to nearly all theories of electronic structure. 

In the next section, we show how the diatomic and 
monatomic contributions (Ham

PQ and Hnm
P) to the 

matrix elements Hnm may be evaluated in terms of 
overlap integrals S n m between polyatomic structures 
and experimental energies of the diatomic and mon
atomic fragments. 

Evaluation of the Hnm
PQ.—We first consider a 

partitioning of the total antisymmetrization operator A 

A = AVQ^A PQA (PQ) (16) 

The operator A(PQ) antisymmetrizes tha t set of elec
trons which are not originally assigned to the diatomic 
fragment PQ, APQ antisymmetrizes tha t set of elec
trons which are originally assigned to PQ, and APQ(PQ) 

is the partial or "supplementary" antisymmetrizer 
which complete the identity. The assignment of 
electrons to the two sets, belonging to and not belonging 
to the diatomic fragment PQ, is specified by the assign
ment of electrons6 within the primitive function i/m 

in front of which A stands in the integrand of eq. 10. 
If now eq. 16 is substituted into eq. 10, we find tha t 

PQ^4(PQ)^mdT (17) 

since HPQ commutes with ^4<PQ) and with ^4PQ. 
I t is recalled tha t the primitive function \pm is a 

linear combination of simple products of atomic spin 
orbitals 

m̂ = E bmvdr ^gJ 
r 

Dr = Adr (cf. eq. 1). Each simple product dr may be 
written as a product dPQdz

(PQ), the first factor containing 
all atomic spin orbitals associated with the diatomic 
fragment PQ only, the second factor containing all 
other atomic spin orbitals. The right half of the inte
grand in eq. 17 thus can be written 

^W(PQ)V^m = E KrDrPQDt™ ( 1 0 ) 
r 

since A VQA (PQ)dr
PQdr(PQ) = £> r

PQA- (PQ); the latter two 
factors are determinantal functions totally antisym
metric with respect to those electrons in the set belong
ing to and not belonging to the diatomic fragment PQ, 
respectively. 

Suppose tha t valence-bond approximations of the 
ground and excited states of the diatomic molecule PQ 
are available 

* . * = 2>.rA*> (2Q) 
r 

If the optimum coefficients csr in these expansions of 
the eigenfunctions <S/S

PQ have been determined, then 
the inverse of eq. 20 

OS* = £ (<-1)r.*.P« (21) 
S 

should be good approximations of the determinantal 
functions in terms of eigenfunctions. If eq. 21 is 
substituted into 19 and then operated upon from the 
left by the diatomic Hamiltonian HPQ, we obtain 

(10) Cf. eq. 6.9-6.10 in ref. 2. 
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H p Q ^ P C ^ l (PQ)^m = E E & m r ( e - 1 ) r e £ . P < i * . P < W , Q > ( 2 2 ) 
r s 

= E £»PQ*»PQ E «w(C-')r5ZVp«> (23) 
s r 

Equation 20 (with t replacing r) is now used to trans
form back to the determinantal wave function basis 
HPQA PQ^l (PQ) l/'m = 

E £*PQ E E cs.4ar(C-1)r»Ap«Dr<p«' ( 2 4 ) 
s t r 

The supplementary antisymmetrizer ^4PQ (PQ) may then 
be applied to generate new determinants antisymmetric 
in all electrons belonging to the polyatomic 

^PQ(PQ)ifpQ^PQ^(PQ)^„ = E £ ' P Q E S.nDu ( 2 5 ) 
S U 

in this expression, the double sum over t and r has been 
accumulated into a single sum over independent de
terminants Dn. 

If one begins with a canonical set of structures ^n 
for the polyatomic molecule, the inverse of eq. 1 will 
yield equations for each Dn in terms of canonical struc
ture wave functions11 

Dn = E ( * " l ) u v * v ( 2 6 ) 

V 

Introducing this into eq. 25 gives 

;WP(3>/Wp<*4(PQ)*m = E E>FQ E h™*« (27) 
S W 

where again we have accumulated the double sum over 
u and v into a single sum over independent ^w Putting 
eq. 27 into 17 gives 

#„mPQ = E E»PQ E W » . (28) 
S W 

The integrals 5n w are simply overlap integrals between 
valence-bond structures as defined in eq. 3. 

The energy integrals Hnm
V appearing in eq. 15 may be 

expressed in a form similar to eq. 28 

Hnm
v = E £>P E 4»5»» (29) 

S W 

in which the £ s
p are experimental energies for electronic 

states of the atom P; the coefficients hSV! in eq. 28 and 
29 will be different, of course. 

Equations 28 and 29 are fundamental, in addition to 
eq. 13-15, in the method of diatomics in molecules. 
Used together, the general energy matrix element Hnm 
may be evaluated in terms of overlap integrals Snw 
and experimental energies of diatomic and monatomic 
fragments which comprise the given polyatomic. 

In practice, eq. 20 will be available only in approxi
mation. Use of the inverse of eq. 20 in 22 followed by 
direct introduction of eq. 20 into 23 suggests a partial 
cancellation of concomitant errors, and thus a possibly 
effective way to bridge the gap between polyatomic 
structure and one- and two-atom structures using 
valence-bond theory. 

The fundamental success of the theory depends, 
therefore, upon how well actual ground and excited 

(11) Actually, the inverse of eq. 1 will not exist in general since the matrix 
b is not square for a canonical set of structures ^ n - If, however, the set ^ n is 
extended to include all possible structures (for a given basis set of valence 
atomic orbitals) having the same eigenvalue for Sz but all possible eigen
values of S2, there will be as many ^ n as D1-, and b~l will exist (e.g., SGe H. 
Eyring, J. Walter, and G, Kimball, "Quantum Chemistry," John Wiley and 
Sons. Inc., New York, N.Y,, 1944, pp. 232-235). Suppose that the operator S2 

is applied to both sides of eq. 27 from the left. The left-hand side is an 
eigenfunction of S2 with eigenvalue .Sm(Sm -t- l )^2 ; each term of the right-
hand side is individually an eigenfunction of S2 with eigenvalue Sw(Sw + 
\)h2. In order that the resulting equation be valid for all possible values of 
the electron coordinates, it is necessary that hsw = 0 unless Sw = Sm-
Therfore, the only vaience-bond structures which will enter eq. 27 are those 
which belong to the original canonical set of valence-bond structures. In 
practice, we have not employed eq. 26, but rather have transformed from 
25 to 27 by inspection using the original eq. 1, 

states are represented by limited sets of valence-bond 
structures and how well valence-bond structures are 
represented by limited sets of actual ground and excited 
states. The derivative success of the theory depends 
upon how well the errors in the former representation 
cancel the errors in the latter representation. All 
errors will thus be contained in the use of a finite eq. 2 
and in the adequacy of eq. 20 and 21; no integral 
approximations are introduced or needed in the entire 
theory. 

Bond and Promotional Energies.—The total energy 
W of a polyatomic molecule represented by a resonance 
of two or more structures can be expressed 

n m 

in which the an are optimum coefficients chosen so that 
W is minimized and so that SP is normalized. If the 
DIM Hamiltonian operator in the form of eq. 7 is 
used to partition the Hnm, we find that 

W = E W7P - E E SPQ (31) 
P P Q > P 

where 

Wp = E E anam/?nmP (32) 
n m 

5PQ = E E w » ( 5 , n
p + i? o m Q - Ham™) ( 3 3 ) 

n m 

The first sum in eq. 31 is the total valence state energy 
of the atoms in the molecule as represented by the 
function SP; _BPQ may be interpreted as the valence 
state energy of the diatomic fragment PQ in the mole
cule relative to the energies of atoms P and Q in their 
appropriate valence states. It will be positive if the 
valence state energy of the diatomic PQ is less than the 
total valence state energy of atoms P and Q in the 
molecule; BPQ may be defined as the bond energy of PQ 
in the polyatomic. 

An alternative form of eq. 31 is 

A£at = E w?° ~ w 

p 

= E E -BPQ - E P p (34) 
P Q > P P 

where A£a t is the energy of atomization of the poly
atomic (for specified relative positions of the nuclei6), 
W-p0 is the ground-state energy of atom P, and -Pp = 
Wv — Wp0 is the promotional energy of atom P in the 
molecule. Subtracting the total zero-point energy of the 
molecule from A£at gives the experimental energy of 
atomization A£a t°. 

Equation 34 thus provides us with a rigorous ex
pression for the atomization energy of a polyatomic 
molecule as a sum of bond energies (over bonds and 
nonbonds) less the atomic promotional energy. 

Application to Right-Angled H2O 
Theory.—We shall describe here a simple application 

to right-angled H2O in which valence-bond wave func
tions corresponding to the two canonical structures 

O 
0 / \ 

/ \ 
H H H - H 

1 II 

are considered. We denote the Is orbitals on the two 
hydrogen atoms by hi and ht, the Is and 2s orbitals on 
oxygen by k and 5, and select axes so that the 2pz = z 
oxygen orbital is directed toward ZJ2 and the 2py = y 
orbital is directed toward Zz1; the 2px = x orbital is 
perpendicular to the molecular plane. All deter
minants in the valence bond wave functions Sp, and SP2 
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will contain the product of atomic orbitals kkssxxyzh}h2; 
spins associated with the first six orbitals will be a/3a/3o!/3; 
spins associated with the last four orbitals will differ 
from determinant to determinant. The wave func
tions may be written 

* = i/j[|aQ.j3/3| - \a00ct\ - \0aa0\ + \PPaa\] 

= 1A(A - A - A + A) (35) 
*2 = lA[|a/3«/3| - l<*0/3a| - l/3aa/3[ 4- \0a0a\\ 

= 1A(A - A - A + A ) (36) 
where we have indicated the spins of yzh\hi only. 

The D I M Hamiltonian can be written 
H = H01O + H0," + HnO - H," - Hi« - H2" (37) 

where 0 refers to oxygen, 1 and 2 to the hydrogen. 
The following approximate valence-bond functions for 
H2 and OH were utilized 

*,HH = 2-1A(I^2] - IW2I) 
2̂HH = 2-1A(IW2, - I W J I ) 

*,™ = IW2], *4HH = \hM (38) 
^1OH = 2-1A(I1T+2^I - \ir+lsh\) 

^2OH = 6-1A(ITT+ZAI + ITT+Z Î - 2\v+zh\) 

Bars over orbitals denote j3-spin, no bar denotes a-spin. 
The spin orbitals kkssifr, common to all of the OH de
terminants, have been omitted in writing eq. 38. 

Applying eq. 18-27 to \pi and fa, we obtain the follow
ing expressions [in which the notation is simplified by 
letting 3CPQ = ^ pQ(PQ>i/poyl PQyI(PQ)] 

3Co1IA2 = 1A(^OH - £ 0 H * ) * 1 + £ 0 B * * 2 

3C12^l = £ H H * * 1 + 1A(^HH - £ B H * ) * 2 

3C12̂ 2 = £HH* 2 (39) 
3C0̂ 1 = £0*i 4- 1A(Si* - -Eo)*2 

3C0̂ 2 = £o**2 

3CnAi = £ H * I , 3C11A2 = £ H * 2 

The eigenvalues appearing here are identified with 
molecular and atomic electronic states in Table I. 
Because of symmetry, 3Co2^n gives results identical with 
3CoiiAn, and 3C2^n gives results identical with 3Ci^n. 

TABLE I 

DIATOMIC AND MONATOMIC ENERGIES USED IN H2O 

CALCULATIONS 

Eigenvalue Eigenstate Energy, kcal. 

£OH X V 1 O H -107° 
Eos* A 2TT, O H 45 6 

BHH X 1 S 8 AH 2 - 5 6 C 

£HH* a 3Su+, H2 28c 

Eo P4 3P, O 0 
E0* p4 1D, O 45° 
E3. S

 2S, H 0 
' Ref. 12. b See text. c W. Kolos and C. C. J. Roothaan, 

Rev. Mod. Phys., 32, 219 (1960). 

All energies given in Table I are accepted observed 
values12 except for the excited 2w state of OH. I t 
is highly probable tha t this state is repulsive: (1) 
according to simple valence-bond theory, it may be 
described as a "no-bond" structure k2s27r+

2(wz)h 
in resonance with a structure containing a O—TT bond, 
k2s2Tr+2z(Tr-h), which would be repulsive since the 
exchange integral K(h,ir) is positive13; (2) according to 
simple molecular orbital theory, this state arises from 
the excited configuration k2(2s^)2(2pa)(2p-ir)i(3s(r), 
which also yields a "TT state predicted by Mulliken1 to be 
repulsive.14 The O-H distance is taken equal to the 
equilibrium internuclear distance in ground-state OH; 
the H - H distance is appropriate to right-angled H2O. 

(12) G. Herzberg, "Molecular Spectra and Molecular Structure," Vol. I, 
D. Van Nostrand Co., Inc., New York, N. Y., 1950. 

(13) R. S. Mulliken, J. Phys. Chem., 56, 295 (1952). 
(14) R, S. Mulliken, Rev. Mod. Phys., 4, 1 (1932). 

Expressions for the matrix elements H n m
P Q are ob

tained readily using eq. 39. The S n m can be evaluated 
using the orbital descriptions of ^i and ^2 

Snm = OT] + ( I 2 S B 2 + 013-SN2 + a-lSf!2 + Q O S N 2 S H + 

O6SN2SB2 + mSs* + a8SN
4 (40) 

where S B = fyh2&v = 0.3479, S N = fsh2dv = 0.4946 
S H = fhihi&v = 0.4440. The coefficients a; for S11 are 
1, 2, - 2 , - 1 A , 1, - 2 , 1, and 1; for S12 are 1A, 1, - 1 , 
1A, - 1 . - 1 , 1A, and 1; and for S22 are 1, - 1 , - 2 , 1, 
— 2, 1, 1, and 2. The diatomics-in-molecules theory can 
be applied either with overlap or without overlap. In 
the latter case, all determinantal functions appearing 
in eq. 35 and 36 are orthonormal, and S n = S22 = 1 
and S12 = S21 = V2. 

Results.—The energy of right-angled H2O (relative to 
ground-state 2H + 0) was calculated without overlap 
using E 0 H* = 0, 20, 45, and 60 kcal.; the results were 
- 2 3 7 . 0 , - 2 3 3 . 6 , - 2 3 0 . 6 , and - 2 2 9 . 4 kcal. These 
may be compared with —231.6 kcal. obtained by sub
tracting 0.4 kcal. (the approximate energy needed to 
bend H2O from 105 to 90°) from the observed A£ a t 
= 232 kcal.18 The results of the calculation using 
-EOH* = 45 kcal. are employed in all considerations 
which follow.16 

Including all overlap in evaluating eq. 40, the energy 
of right-angled H2O was calculated to be —230.9 kcal., 
which is in remarkable agreement with the value ob
tained without overlap. The optimum coefficients in 
the resulting normalized wave function 

* = ai¥i + o2*2 (41) 

turn out to be O1 = 0.9447 and C2 = 0.3498 with overlap, 
ai = 0.8513 and a2 = 0.2500 without overlap. The 
structure projections or occupation numbers17 

H- •w~>m (42) 

are V1 = 0.8013 and v% = 0.1988 with overlap, vi = 
0.8311 and v2 = 0.1689 without overlap. 

The bond energies Bon and BHH and the promotional 
energy P 0 of the oxygen atom in H2O can be computed 
for the individual structures ^ 1 and ^ 2 as well as for the 
resonance hybrid ^ according to definitions given 
above. Results are displayed in Table II for the com
plete t reatment and for the calculation in which overlap 
is neglected. 

TABLE II 

BOND AND PROMOTIONAL ENERGIES (KCAL.) FOR RIGHT-ANGLED 

H2O STRUCTURES" AND FOR OH 

Structure BOH BHH Ô A£at 

OH. 118 11 107 
*i(HaO) 119.1 - 5 . 3 12.1 220.8 

(118.3) ( -7 .0 ) (11.3) (218.3) 
^2(H2O) 57.5 56.0 45.0 126.1 

(38.0) (56.0) (45.0) (87.0) 
*(H20) 120.4 11.2 21.0 230.9 

(120.4) (10.3) (20.5) (230.6) 
° Numbers enclosed in parentheses are results obtained when 

overlap is neglected. 

The bearing of promotional energies upon the signifi
cance of bond energies is well known.18 Some time 

(15) Experimental energies of atomization for H2O and OH are 218.912 

and 101.3 kcal. [P. A. Giguera, J. Chem. Phys., 30, 322 (1959)], respectively. 
Zero-point energies are 13.1 (ref. 12, Vol. 2) and 5.3 kcal.,12 respectively. 

(16) Since the excited 2ir state of OH is probably repulsive, and since it 
correlates with the ground state of H plus the excited p4 2D state of O, 
^OH* probably exceeds 45 kcal. Thus, our calculated energy of HjO should 
be several kcal. higher than —230.6. 

(17) A. C. Hurley, Proc. Phys. Soc. (London), A69, 49 (1946). 
(18) L. Pauling, Proc. Natl. Acad. Set. U. S., 35, 229 (1949); for the most 

recent and exacting analysis, see K. Ruedenberg, Rev. Mod. Phys., 34, 326 
(1962). 
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ago, Moffitt19 pointed out tha t the 18-kcal. discrepancy 
between A£ a t (H 2 0) and 2A£ a t (OH) is reduced if one 
properly accounts for promotional energies. First it 
was assumed tha t the energy of atomization can be 
separated into bond energies and promotional energies 

A£.,(H20) = 232 kcal. = 
A£a t(OH) = 107 kcal. 

2 5 O H — PHOH 

= BOH — POB. 

(43) 

But .PHOH = -POH = 1 1 kcal. for the simple valence-
bond structures ^ , and ^ i O H (eq. 35 and 38). There
fore 

A£ a t(H20) = 2A£a ,(OH) + P0H 
= 214 kcal. + 11 kcal. = 225 kcal. (44) 

The 7-kcal. difference remaining is then at t r ibuted to 
hybridization, ionic-covalent resonance, H - H inter
action, etc. 

(19) W. Moffitt, Rept. Progr. Phys., 17, 173 (1959). 

The diatomics-in-molecules theory leads to a quanti
tat ive explanation for the difference in atomization 
energies of H2O and OH. I t is seen tha t an important 
factor is the H - H interaction, which in fact contributes 
11 kcal. to the binding in H2O. The promotional energy 
for the oxygen atom is found to be almost twice as 
large in right-angled H2O as in OH. 

Questions relating to hybridization and/or ionic 
character cannot be answered by the present treat
ment. Addition of canonical ionic structures for H2O 
to the starting set, necessitating valence-bond repre
sentations of OH ground and excited states more re
fined than eq. 38, would lead to explanations in terms of 
relative ionic characters. In any case, more detailed 
OH molecule descriptions will be necessary before the 
energy of H2O can be determined by diatomics-in-
molecules theory as a function of bond angle. Work is 
now in progress along these lines. 
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A Method of Diatomics in Molecules. II. H3 and H3
+ l 

B Y F R A N K O. ELLISON, NORMAN T. H U F F , AND JASHBHAI C. P A T E L 

RECEIVED J U N E 10, 1963 

The diatomics-in-molecules theory described in the preceding paper2 is used to calculate the potential energy-
surfaces for H3 and H 3

+ . The energy of atomization A£ a t of linear symmetrical (i?HH = 1.8 bohrs) H3 is cal
culated to be 96.60 kcal., which corresponds to a classical activation energy of 13 kcal. (experimental, ~ 7 . 7 
kcal.). The molecule-ion H 3

+ is found to be most stable as an equilateral triangle, A£a t = 223.8 kcal. The 
totally symmetrical Ai and doubly degenerate Ei vibrational wave numbers are determined to be 3450 and 
2330 cm."1, respectively. The zero-point energy is thus 11.5 kcal. and A£a t° = 212.3 kcal. The reaction 
H2 + H 2

+ = H 3
+ + H is calculated to be exothermic by 48 kcal.; it is speculated that this result, as well as 

the atomization energies, may be about 10 kcal. too high. 

Introduction 
In the preceding paper (hereafter referred to as paper 

I ) , 2 there was proposed an approximate theory designed 
primarily to predict molecular stabilities and to provide 
understanding of the deviations from strict additivity 
of bond energies. In this paper we use the theory to 
calculate the potential energy surfaces for H3 and H 3

+ , 
as well as the vibrational structure of the latter mole
cule-ion. 

The H3 Molecule 
Theory.—We begin with the conventional valence-

bond structures for H3, which may be written A-B C 
and A B-C, the associated wave functions being 

*! = \abc\ — \abc\ 

* 2 = |a6cl - \abc\ (1) 

The a, b, and c represent Is orbitals located on the three 
centers; a bar over the orbital denotes /3-spin, no bar 
means a-spin. The wave functions are not normalized, 
even for infinite separation of the nuclei; experience 
has shown us tha t diatomics-in-molecules theory is 
easier to execute if functions are left nonnormalized. 

The simplest valence-bond wave functions for H2 are 
utilized; for example 

^1AB = | 0 g | _ \ab\ 

^ 1 A B 

^ 2 A B 

= \ab\ 

= \ab\ 

+ lai | 
*4

AB = |a5| 

(2) 

These represent the ground 1Sg+ state and excited 
3 2 u

+ states, respectively; analogous expressions for 
•^sBC and ^ S

A C are also needed. 
The diatomics-in-molecules theory will be illustrated 

by evaluating two of the necessary integrals, Hn
AB 

and //22A B , where 

(1) Supported in part hy a grant from the National Science Foundation: 
(2) F. O. Ellison, J. Am Chem. Soc, 86, 3540 (1963). 

# . m P Q = y * n ^ P Q < P « ) i ? P Q ^ P Q ^ ( P Q ) ^ n d r ( 3 ) 

First, we may write 

\pi = UiS2C3 — aibiCs 

^4AB^(AB)^2 = |o5|c - |a6|c (4) 

Employing the inverse of eq. 2, we find tha t 
^ A B ^ ( A B ) ^ = y 2 ( * l A B + * 2 A B V ~ *3ABC (5) 

Application of the diatomic hamiltonian HAB yields 

HABAABA(AB)^ = [£iAB*iABc + £2
AB(*2

ABc - 2*3
AB<:)]/2 

(6) 
where £ i A B and EiAB are the ground singlet and excited 
triplet eigenvalues for H2, the internuclear distance of 
which corresponds to the distance RAB in H3. We now 
use eq. 2 to transform back again to the determinantal 
function basis, and then apply the supplementary anti-
symmetrizer ^4AB ( A B ) 

I K W 2 = [£iA B( |aSc| - \abc\) + 

E2
AB(\abc\ + \abc\ - 2 | a i c | ) ] / 2 (7) 

where 3CAB = ^ 4 A B ( A B ) ^ A B ^ 4 A B ^ ( A B ) . Introducing eq. 
1 gives 

3CAB^2 = [£iAB*, + £2
AB(2*2 - *,)]/2 

from which we find tha t 
Hn^ = [Ei^Sn + £2

AB(2512 - Si1)]/2 
H 2 2 A B = [E1AB521 + £ 2 AB ( 2 5 2 2 _ 5 2 l ) ) / 2 

where Snm = y ^ n ^ m d r . 
Similarly it can be shown that 

3 C A B ^ = £ , A B * ! 

JCAC^I = [ £ , A C ( * i - * 8 ) + £ 2
A C ( * i + * 2 ) ] / 2 

3CBC^ 1 = [ £ i B C * 2 + £ 2
B C ( 2 * , - If,)]/2 

KAvM = [ £ i A C ( * 2 - * 0 + £ s A C ( * i + * 2 ) ] / 2 

3 < W 2 = -EiB C* 2 

3CA^n = 3CB0n = 3Cc^n = £ H * n 

(8) 

(9) 

(10) 


