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An approximate theory is presented in which the electronic structure of a polyatomic molecule is expressed
in terms of electronic structures for all possible diatomic and monatomic fragments which compose it. The
primary purposes of the theory are: (1) to predict stabilities of polyatomic molecules; (2) to provide under-
standing of deviations from strict additivity of bond energies; and (3) to give semiempirical explanation for

nonbonded interactions.

The general approach bears a strong resemblance to the well-known Slater—Eyring

semiempirical valence-bond method, except that in the new theory there appear no calibration parameters,
no exchange integrals, and no coulomb integrals, but onlv overlap integrals and experimental diatomic and

monatomic energies.

Problems involving multiple exchanges do not occur in the new treatment.

An appli-

cation to the right-angled conformation of H,O gives an energy of atomization in essential agreement with ex-

periment.
and the O-atom promotional energy is 21.0 kcal

For H,0, the O-H and H-H bond energies are calculated to be 1204 and 11.2 kecal., respectively,
These may be compared with the calculated O-H bond

energy 118 kcal. and O-atom promotional energy 11 kcal. for the OH radical.

Introduction

One main obstacle on the road to predicting quantum
mechanically and interpreting molecular atomization
energies is the profound effect of electron correlation,
especially of the intraatomic kind, on total electronic
energy. Really theoretical accounting of this correla-
tion energy requires a very large set of configurational
wave functions in the conventional variational calcula-
tion. In 1951, Moffitt proposed a possible way to
allow for intraatomic correlation in molecular calcula-
tions by admitting experimental energies of atomic and
ionic states in a particular way; this new approach was
called the atoms-in-molecules (AIM) method.?

In the AIM method, eigenfunctions for electronic
states of the separated atoms are used to construct the
molecular basis wave functions. Alternatively, a
polyatomic molecule might be visualized as formed by
interaction of diatomic molecules (and at least one atom,
for the odd-atom case). Since atoms probably are
perturbed more than diatomics on polyatomic molecule
formation, an immediate and conceivably improved
extension of the AIM method would be one which
employed electronic states of separated diatomics
(and those of one atom, if necessary) for construction of
the unperturbed wave functions. This particular ap-
proach to polyatomic structure is, however, not the
one to be developed in this paper.

In the next section we describe a theory in which the
electronic structure of a polyatomic molecule is repre-
sented conventionally by a resonance of valence-bond
structures. The total hamiltonian operator is cast
into a form which contains only hamiltonians for all
possible diatomic and monatomic fragments in the
polyatomic, but no interaction operators. If good
valence-bond approximations of the diatomic and
monatomic ground and excited state eigenfunctions are
available, it becomes possible to evaluate the general
energy matrix for the polyatomic in terms of the over-
lap matrix (for the starting canonical set of polyatomic
structures) and experimental diatomic and monatomic
energies. The general approach bears a strong resem-
blance to the well-known semiempirical valence-bond
method,? except that in the new theory there appear no
exchange integrals, no coulomb integrals, and no cali-
bration parameters.

In the next section, also, it is shown that diatomics-
in-molecules theory leads straightforwardly to a natural
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expression for the atomization energy of a polyatomic
as a sum over g/l bond energies less the total atomic
promotional energy.

The theory is applied to right-angled H,O in the last
section.

Theory

General. —We begin by considering valence-bond
structure wave functions for a given polyatomic system

Vo = 3 buDh (1)
r

The D: represent determinantal wave functions (anti-
symmetrized products of atomic spin orbitals), and the
bar are coefficients chosen so that (1) ¥, is antisym-
metric with respect to interchange of spin factors of
orbitals forming an electron-pair, (2) ¥, is the proper
eigenfunction of S? (square of total spin angular momen-
tum) and S, (component of S upon z-axis), and (3) ¥,
is normalized for infinite separation of the atoms.*

We suppose that a polyatomic molecule can be
represented by a resonance of two or more valence-bond
canonical structures ¥, like eq. 1.

¥ = Za.¥, (2)

In order to determine the optimum coefficients aa
for which the expectation value of the molecular
energy W is minimized,® one must first solve the secular
determinant |Hum — SamW| = 0, in which

Som = f\Pn‘Pmd‘r, Hnm = f‘PnH‘Pde (3)

We may write ¥, = Aym, where A is the total anti-
symmetrization operator and ¥ is a linear combination
of simple products of atomic spin orbitals; we shall
refer to ¥m as the primitive function for the mth struc-
ture.* Now, a typical energy matrix element can be
written

Hom = S VadAHyndr (4)

since the operators H and A commute.

We next consider a general atoms-in-molecules
expression of the total Hamiltonian operator for the
polyatomic molecule

H=ZHP+ZZ Veq (5)
P

P Q>P

Each Hp contains all kinetic energy operators and all
intraatomic potential energy terms in A which depend

(4) All conditions but the first are optional in valence-Bond theory;
condition 2 simplifies calculations significantly,

(5) The functions ¥, depend parametrically upon the relative positions
of the nuclei under the Born—Oppenheimer approximation; W is minimized
for fixed positions of the nuclei.

(6) Electrous are assigned to the atomic spin orbitals in a serial manner:
electrons 1 to na to atomic spin orbitals associated with atom A, the next
set of electrons to atom B, etc. Such electron assignments may differ from
one p‘rimitive function to another because of different ionicities of the associ-
ated valence-bond structures.
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exclusively upon the coordinates of electrons assigned
originally to atom P and not upon the coordinates of
any nuclei other than nucleus P; Vg contains all inter-
atomic interaction potential energy terms in A depend-
ing upon electron and nuclear coordinates common to
atom P and atom Q only. There are, of course, many
different ways to partition H in this way depending upon
the original assignment of electron numbers to the
various atoms. The atoms-in-molecules form of H will
be determined in each particular energy matrix ele-
ment Hum by the assignment of electrons within the
primitive function ¥ upon which H is set to operate
(eq. 4 and footnote 6).

The hamiltonian Hpg for a diatomic molecule PQ,
again written in its atoms-in-molecules form, is

HPQ = Hp + HQ + VPQ (6)

If this expression is solved for Vpg and then substituted
into eq. 5, we obtain

H = ZHyp +Z Z tHpq — Hp —HQ) (7
P Q<P
=5 3 Heq—(N—2)Y Hr (8)
P Q>P P

where N is the total nuniber of atoms in the polyatomic.
We shall refer to each of these forms of H as the
diatomics-in-molecules (DIM) Hamiltonian; they con-
tain explicitly no ‘‘interaction” operators but only
hamiltonians for the constituent diatomic molecules
and atoms. The total energy of a polyatomic is ex-
pressed as the sum of energies of all possible diatomic
fragments (for each fragment, the energy of “both
atoms in the fragment’ as well as their interaction
energy is implicit) minus the sum of atom energies as
many times as necessary to correct for their multiple
inclusion in the diatomic fraginent energy sum.
If eq. 8 is substituted into eq. 4, we obtain

Ham = 3, 3 How™ — (N =2) 3 Hud® (g

P Q5P P
where

HonfR = [V AHpqymdr (10)

How® = SV AHpyudr (11)

For n = m, HunF2/Sns may be regarded as the valence
state energy of the diatomic molecule PQ in the poly-
atomic molecule as described by the single valence-bond
structure ¥y HpnF/San 15 the valence state energy of
the atom P in the polyatomic as described by struc-
ture ¥, 78

It must be noted at this point that the matrices®
(H¥Q) and (HF) are not separately hermitian, and
indeed are not fully independent. Since (H) is
hermitian, (H) = (H)¥, and thus

T X UHP) = (HPYY] — (N —2) 2 (H) -
PQ>P P
(HR)*] =0 (12)
We may rewrite eq. 9 in the form
Hnm = Z Z ﬁnmPQ - (N - 2) Z ﬁnmp (13)
P

P Q>P
where
HunFe = V/y(HonP? + HuiPQ) (14)
Aon? = /o(How® + Huo?) (15)

There is now no necessary relation between the ele-
ments of what we may call the diatomic valence state
energy matrices (H¥?) and atomic valence state
energy matrices (HF). Both are hermitian, and both
are defined uniquely in any representation which

(7) A. L. Companion and F. O. Ellison, J. Chem. Phys., 38, 1 (1958).

(8) F. O. Ellison, ibid., 38, 3107 (1962).

(9) The matrix (HFQ), for example, is that matrix the elements of which
are HomP
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may be constructed linearly from our set of canonical
valence-bond structures V.1

Equation 13 is fundamental in the method of
diatomics in molecules. We have partitioned the
general energy matrix element H.m into parts cor-
responding to independent contributions from each
diatomic and monatomic fragment. No approxima-
tions have been made thus far in the theory. Any
error resulting in applications of this first portion of the
method can be attributed to the use of a limited set of
canonical structures (eq. 1 and 2); this restriction is
common to nearly all theories of electronic structure.

In the next section, we show how the diatomic and
monatomic contributions (HpmF? and Ham®) to the
matrix elements Hn.ym may be evaluated in terms of
overlap integrals Sam between polyatomic structures
and experimental energies of the diatomic and mon-
atomic fragments.

Evaluation of the Hnm*?—We first consider a
partitioning of the total antisymmetrization operator 4

A = Apq®VAped rg) (16)

The operator Appgy antisymmetrizes that set of elec-
trons which are not originally assigned to the diatomic
fragment PQ, Apgo antisymmetrizes that set of elec-
trons which are originally assigned to PQ, and Apg®F
is the partial or ‘“‘supplementary” antisymmetrizer
which complete the identity. The assignment of
electrons to the two sets, belonging to and not belonging
to the diatomic fragment PQ, is specified by the assign-
ment of electrons® within the primitive function ¢¥m
in front of which A4 stands in the integrand of eq. 10.
If now eq. 16 is substituted into eq. 10, we find that

Hon®= [V, 4pqT¥ Hradrod (o) Ymdr (17)

since Hpo commutes with 4 (poy and with Apq.

It is recalled that the primitive function ¢ is a
linear combination of simple products of atomic spin
orbitals

Ym = rz bmrd: (18)

D. = Ad: (¢f. eq. 1). Each simple product d: may be
written as a product d:79d: ¥, the first factor containing
all atomic spin orbitals associated with the diatomic
fragment PQ only, the second factor containing all
other atomic spin orbitals. The right half of the inte-
grand in eq. 17 thus can be written

APQA(PQ)le = Xr: bmrDrPQDr(PQ) (19)

since Apod (p0yd: TP = DFRD,(PQY- the latter two
factors are determinantal functions totally antisym-
metric with respect to those electrons in the set belong-
ing to and not belonging to the diatomic fragment PQ,
respectively.

Suppose that valence-bond approximations of the
ground and excited states of the diatomic molecule PQ
are available

‘PsPQ = Z CerrPQ (20)
r

If the optimum coefficients ¢ in these expansions of
the eigenfunctions ¥.F? have been determined, then
the inverse of eq. 20

D = Z (c71)es WP (21)

should be good approximations of the determinantal
functions in terms of eigenfunctions. If eq. 21 is
substituted into 19 and then operated upon from the
left by the diatomic Hamiltonian Hpg, we obtain

(10} Cf. eq. 6.9-6.10 in ref. 2.
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HPQAPQA(PQ)¢m = Xr: g: bmr(c_l)rcEsPQ‘PaPQDr(PQ) (22)

Z JORED B Z bmr(C_l)rsDr(PQ) (23)
s r

Equation 20 (with t replacing r) is now used to traus-
form back to the determinantal wave function basis

HrqArqd peyym =
Z EsPQ Xt: Z Cstbmr(C_l)rsDtPQDr(PQ) (24)
r

s
The supplementary antisymmetrizer 4pg®F? may then
be applied to generate new determinants antisymmetric
in all electrons belonging to the polyatomic

ApqPOHpqArqArvm = p EF2 Y. guD (25)
s u

in this expression, the double sum over t and r has been
accumulated into a single sum over independent de-
terminants Dy,

If one begins with a canonical set of structures ¥,
for the polyatomic molecule, the inverse of eq. 1 will
yield equations for each D, in terms of canonical struc-
ture wave functions!!

Du = Z (b_l)uv‘l"v (26)

Introducing this into eq. 25 gives
Arq®VHpqAroAraym = 9 EF? Y hawls 27
5 w

where again we have accumulated the double sum over
uand v into a single sum over independent ¥. Putting
eq. 27 into 17 gives

HooPe = 3 EF2 Y hywSaw (28)
s w

The integrals Suw are simply overlap integrals between
valence-bond structures as defined in eq. 3.

The energy integrals Hnm® appearing in eq. 15 may be
expressed in a form similar to eq. 28

HnmP = Z EsP Z hstnw (29)
s w

in which the EF are experimental energies for electronic
states of the atom P; the coefficients ksw in eq. 28 and
29 will be different, of course.

Equations 28 and 29 are fundamental, in addition to
eq. 13-15, in the method of diatomics in molecules.
Used together, the general energy matrix element Hom
may be evaluated in terms of overlap integrals Spw
and experimental energies of diatomic and monatomic
fragments which comprise the given polyatomic.

In practice, eq. 20 will be available only in approxi-
mation. Use of the inverse of eq. 20 in 22 followed by
direct introduction of eq. 20 into 23 suggests a partial
cancellation of concomitant errors, and thus a possibly
effective way to bridge the gap between polyatomic
structure and one- and two-atom structures using
valence-bond theory.

The fundamental success of the theory depends,
therefore, upon how well actual ground and excited

(11) Actually, the inverse of eq. 1 will not cxist in general since the matrix
b is not square for a canonical set of structures ¥,. If, however, the set ¥y is
extended to include all possible structures (for a given basis set of valence
atomic orbitals) having the same eigenvalue for S; but all possible eigen-
values of S?, there will be as many ¥, as Dy, and 5! will exist (e.g., see H.
Eyring, J. Walter, and G. Kimball, *"Quantum Chemistry,”’ John Wiley and
Sons, Inc., New York, N.Y., 1944, pp. 232-235). Suppose that the operator S?
is applied to both sides of eq. 27 from the left. The left-hand side is an
eigenfunction of 52 with eigenvalue Sy (Sm + 1)A2; each term of the right-
hand side is individually an eigenfunction of S? with eigenvalue Sw(Sw +
1}42.  In order that the resulting equation be valid for all possible values of
the electron coordinates, it is necessary that Agw = 0 unless Sw = Sm.
Therfore, the only valence-bond structures which will enter eq. 27 are those
which belong to the original canonical set of valence-bond structures. In
practice, we have not employed eq. 26, but rather have transformed from
25 to 27 by inspection using the original eq. 1.
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states are represented by limited sets of valence-bond
structures and how well valence-bond structures are
represented by limited sets of actual ground and excited
states. The derivative success of the theory depends
upon how well the errors in the former representation
cancel the errors in the latter representation. All
errors will thus be contained in the use of a finite eq. 2
and in the adequacy of eq. 20 and 21; no integral
approximations are introduced or needed in the entire
theory.

Bond and Promotional Energies.—The total energy
W of a polyatomic molecule represented by a resonance
of two or more structures can be expressed

W = Z Z anamﬁnm (30)

in which the an are optimum coefficients chosen so that
W is minimized and so that ¥ is normalized. If the
DIM Hamiltonian operator in the form of eq. 7 is
used to partition the Hum, we find that

W=2P:WP—ZZBPQ (31)

PQ>P
where

We = Z Z anamﬁnmp (32)
n m

BPQ = Z Z anam(ﬁnmp +ﬁan - ﬁnmPQ) (33)
The first sum in eq. 31 is the total valence state energy
of the atoms in the molecule as represented by the
function ¥; Bpg may be interpreted as the valence
state energy of the diatomic fragment PQ in the mole-
cule relative to the energies of atoms P and Q in their
appropriate valence states. It will be positive if the
valence state energy of the diatomic PQ is less than the
total valence state energy of atoms P and Q in the
molecule; Bpg may be defined as the bond energy of PQ
in the polyatomic.
An alternative form of eq. 31 is

AEa = 3 We° — W

P
=2 2 Bra— 2 Pr (3
P Q>P P

where AFE,. is the energy of atomization of the poly-
atomic (for specified relative positions of the nuclei®),
Wpe° is the ground-state energy of atom P, and Pp =
Wp — WpP is the promotional energy of atom P in the
molecule. Subtracting the total zero-point energy of the
molecule from AEa.: gives the experimental energy of
atomization AE,:°.

Equation 34 thus provides us with a rigorous ex-
pression for the atomization energy of a polyatomic
molecule as a sum of bond energies (over bouds and
nonbonds) less the atomic promotional energy.

Application to Right-Angled H,O

Theory.—We shall describe here a simple application
to right-angled H,O in which valence-bond wave func-
tions corresponding to the two canonical structures

0
/O\ VAN
H H H-—H
I II

are considered. We denote the 1s orbitals on the two
hydrogen atoms by % and k,, the 1s and 2s orbitals on
oxygen by k and s, and select axes so that the 2pz = 2
oxygen orbital is directed toward A, and the 2py = y
orbital is directed toward %,; the 2px = x orbital is
perpendicular to the molecular plane. All deter-
minants in the valence bond wave functions ¥, and ¥,
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will contain the product of atomic orbitals kkssxxysh h,
spins associated with the first six orbitals will be efaBa8;
spins associated with the last four orbitals will differ
from determinant to determinant. The wave func-
tions may be written

Vv = t/l|aaff| — |aBBal — [BaaB| + |BBaal]

= 1/y(Dy — Dy — D3 + D) (35)
Vv, = 1of|aBaB| — |aBfa] — [BaaB] + |BaBal]
= 1/,2(D5 _ D2 - D3 + DG) (36)

where we have indicated the spins of yzhih, only.
The DIM Hamiltonian can be written
H = Hy® + Hp® + Hp® — H® — H" — H*  (37)
where ( refers to oxygen, 1 and 2 to the hydrogen.
The following approximate valence-bond functions for
H, and OH were utilized
VEE = 27V | lnhy| — [laha|)
VHE = 27/ (| lnhy) — |Tuha])
YHE = [huky|, WHE = |hih (38)
WOH = 272 (|mygh] — |mezh])
WOR = 61 (|myzh| + |mozh| — 2|7 2h])
Bars over orbitals denote 8-spin, no bar denotes a-spin.
The spin orbitals k&s§w7, common to all of the OH de-
terminants, have been omitted in writing eq. 38.
Applying eq. 18-27 to ¥, and y», we obtain the follow-
ing expressions [in which the notation is simplified by
letting 3po = Apo TP Hpod pod (po) ]
Koy = Eor¥,
HKaye = '/o(Eow — Eor*)¥: + Eor*¥:

K = EHH*‘I’l + 1/Z(EHH - EHH*)‘I’2

Hiye: = Egr¥s (39)
Hoyr = Eo¥y + /o Eo* — Eo)¥s

Koy = Eg*¥,

Ky = Eg¥, Ky = Eg¥s

The eigenvalues appearing here are identified with
molecular and atomic electronic states in Table I.
Because of symmetry, JCoa gives results identical with
FCaba, and Foyn gives results identical with 3Ciyn.

TaBLE [
DiatoMmic aND MonaTOMIc ENERGIES USED IN H,O
CALCULATIONS
Eigenvalue Eigenstate Energy, kcal.
Eor X 27, OH —107°
Eon* A 27, OH 45
Egm X 12,7, H, —56°
Egg* a’Z,* H, 28°
Eo pt P, O 0
Eo* p*'D, O 45°
Egn s %S, H 0
@ Ref. 12. ® See text. ¢ W. Kolos and C. C. J. Roothaan,

Rev. Mod. Phys., 32, 219 (1960).

All energies given in Table I are accepted observed
values!? except for the excited %r state of OH. It
is highly probable that this state is repulsive: (1)
according to simple valence-bond theory, it may be
described as a ‘‘no-bond” structure k2w, 2 (m2)h
in resonance with a structure containing a o—# bond,
k?s?my%z(w-h), which would be repulsive since the
exchange integral X (h, ) is positive!?; (2) according to
simple molecular orbital theory, this state arises from
the excited configuration k2(2s0)2(2po)(2p7)%(3s0),
which also yields a *r state predicted by Mulliken' to be
repulsive.!* The O-H distance is taken equal to the
equilibrinm internuclear distance in ground-state OH;
the H-H distance is appropriate to right-angled H,O.

(12) G. Herzberg, ‘"Molecular Spectra and Molecular Structure,” Vol. 1.
D. Van Nostrand Co., Inc., New York, N. Y., 1950.

(13) R. S. Mulliken, J. Phys. Chem., 56, 295 (1952).
(14) R. 8. Mulliken, Rev. Mod. Phys., 4, 1 (1932).
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Expressions for the matrix elements Hun™? are ob-
tained readily using eq. 39. The Sam can be evaluated
using the orbital descriptions of ¥, and ¢,

Som = a1 + a2S8? + asSx? + 2sSy? + a;:SNESE +
asSn2Sp? + arSBt + asSxt (40)

where S = Syhodv = 0.3479, Sx = JSshodv = 0.4946
Su = S hody = 0.4440. The coefficients o for S, are
1,2, —2, =/, 1, —2, 1, and 1; for Sy are '/, 1, —1,
/e, —1, —1, 1/, and 1; and for Sy are 1, —1, —2, 1,
—2,1,1,and 2. The diatomics-in-molecules theory can
be applied either with overlap or without overlap. In
the latter case, all determinantal functions appearing
in eq. 35 and 36 are orthonormal, and Sy = Sp = 1
and S, = Sy = 1/2-

Results.—The energy of right-angled H,O (relative to
ground-state 2H + 0) was calculated without overlap
using Eog* = 0, 20, 45, and 60 kcal.; the results were
—237.0, —233.6, —230.6, and —229.4 kcal. These
may be compared with —231.6 kcal. obtained by sub-
tracting 0.4 kcal. (the approximate energy needed to
bend H,O from 105 to 90°) from the observed AE,:
= 232 kcal.¥® The results of the calculation using
Eon* = 45 kcal. are employed in all considerations
which follow.18

Including all overlap in evaluating eq. 40, the energy
of right-angled H,O was calculated to be —230.9 kcal,,
which is in remarkable agreement with the value ob-
tained without overlap. The optimum coefficients in
the resulting normalized wave function

¥ = a¥ + a¥, (41)

turn out to be a; = 0.9447 and g, = 0.3498 with overlap,
a1 = 0.8513 and a, = 0.2500 without overlap. The
structure projections or occupation numbers!

Yn = an Z 2mSam (42)
m

are y; = 0.8013 and », = 0.1988 with overlap, » =
0.8311 and », = 0.1689 without overlap.

The bond energies Bon and Bun and the promotional
energy P, of the oxygen atom in Hy;O can be computed
for the individual structures ¥, and ¥, as well as for the
resonance hybrid ¥ according to definitions given
above. Results are displayed in Table II for the com-
plete treatment and for the calculation in which overlap
1s neglected.

TaBLE 11

Borxp aNxD PROMOTIONAL ENERGIES (KcAL.) FOR RIGHT-ANGLED
H,0 STRUCTURES® AND FOR OH

Structure Bog Bgg Py AEg
OH 118 11 107
¥,(H,0) 119.1 —5.3 12.1 220.8
(118.3) (=7.0) (11.3) (218.3)
¥,(H,0) 57.5 56.0 45.0 126.1
(38.0) (56.0) (45.0) (87.0)
¥(H,0) 120 .4 11.2 21.0 230.9
(120.4) (10.3) (20.5) (230.6)

¢ Numbers enclosed in parentheses are results obtained when
overlap is neglected.

The bearing of promotional energies upon the signifi-
cance of bond energies is well known.’* Some time

(15) Experimental energies of atomization for HoO and OH are 218.912
and 101.3 kcal. [P. A. Giguera, J. Chem. Phys., 30, 322 (1959)], respectively.
Zero-point energies are 13.1 (ref. 12, Vol. 2} and 5.3 kcal,,!? respectively.

(16) Since the excited ®» state of OH is probably repulsive, and since it
correlates with the ground state of H plus the excited pt* 2D state of O,
EoH™* probably exceeds 45 kcal. Thus, our calculated energy of H:O should
be several kcal. higher than —230.6.

(17) A. C. Hurley, Proc. Phys. Soc. (London), A69, 49 (1946).

(18) L. Pauling, Proc. Natl. Acad. S¢i. U. S., 85, 229 (1949); for the most
recent and exacting analysis, see K. Ruedenberg, Rer. Mod. Phys. 34, 326
(1962).
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ago, Moffitt!® pointed out that the 18-kcal. discrepancy
between AFE.:(H,O) and 2AE..(OH) is reduced if one
properly accounts for promotional energies. First it
was assumed that the energy of atomization can be
separated into bond energies and promotional energies

AE.(H;0) = 232 kcal. = 2Bor — Pror (43)
AE(OH) = 107 kcal. = Borg — Posr
But Puou = Pou = 11 kcal. for the simple valence-
bond structures ¥; and ¥,°H (eq. 35 and 38). There-
fore
AE.(H:,0) = 2AE.(OH) + Por
= 214 kcal. + 11 kcal. = 225 kcal. (44)

The 7-kcal. difference remaining is then attributed to
hybridization, ionic—covalent resonance, H-H inter-
action, etc.

(19) W. Moffitt, Rept. Progr. Phys., 17, 173 (1959).
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The diatomics-in-molecules theory leads to a quanti-
tative explanation for the difference in atomization
energies of H;O and OH. It is seen that an important
factor is the H-H interaction, which in fact contributes
11 keal. to the binding in H,O. The promotional energy
for the oxygen atom is found to be almost twice as
large in right-angled H,O as in OH.

Questions relating to hybridization and/or ionic
character cannot be answered by the present treat-
ment. Addition of canonical {onic structures for H,0O
to the starting set, necessitating valence-bond repre-
sentations of OH ground and excited states more re-
fined than eq. 38, would lead to explanations in terms of
relative ionic characters. In any case, more detailed
OH molecule descriptions will be necessary before the
energy of HyO can be determined by diatomics-in-
molecules theory as a function of bond angle. Work is
now in progress along these lines.

[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, CARNEGIE INSTITUTE OF TECHNOLOGY, PITTSBURGH 13, PENNA.]
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H; and H,™!

By Frank O. ELL1SON, NORMAN T. HUFF, AND JasHBHAI C. PATEL
RECEIVED JUNE 10, 1963

The diatomics-in-molecules theory described in the preceding paper? is used to calculate the potential energy

surfaces for H; and H; .

The energy of atomization AE,: of linear symmetrical (Rgg = 1.8 bohrs) H; is cal-

culated to be 96.60 kcal., which corresponds to a classical activation energy of 13 kcal. (experimental, ~7.7

keal.).

The molecule-ion H;* is found to be most stable as an equilateral triangle, AE,, = 223.8 kcal. The

totally symmetrical 4,” and doubly degenerate E,” vibrational wave numbers are determined to be 3450 and

2330 cm.™!, respectively.

The zero-point energy is thus 11.5 kecal. and AE,:° = 212.3 kcal.

The reaction

H; + H,* = H;T 4+ H is calculated to be exothermic by 48 kcal.; it is speculated that this result, as well as

the atomization energies, may be about 10 kecal. too high.

Introduction

In the preceding paper (hereafter referred to as paper
I),? there was proposed an approximate theory designed
primarily to predict molecular stabilities and to provide
understanding of the deviations from strict additivity
of bond energies. In this paper we use the theory to
calculate the potential energy surfaces for H; and Hs*,
as well as the vibrational structure of the latter mole-
cule-ion.

The H; Molecule
Theory.—We begin with the conventional valence-
bond structures for Hy, which may be written A-B C
and A B-C, the associated wave functions being
v, = |abc| — |abc]
Yy = |abc! — labe| (1)
The a, b, and ¢ represent 1s orbitals located on the three
centers; a bar over the orbital denotes 8-spin, no bar
means a-spin. The wave functions are not normalized,
even for infinite separation of the nuclei; experience
has shown us that diatomics-in-molecules theory is
easier to execute if functions are left nonnormalized.
The simplest valence-bond wave functions for H, are
utilized; for example
vAP = |ab| — labl
VAR = |ab| + lab| (2)
AR = [gbl|, WAB = |gb|
These represent the ground !Z,* state and excited
33,7t states, respectively; analogous expressions for
V.BC and ¥AC are also needed.
The diatomics-in-molecules theory will be illustrated
by evaluating two of the necessary integrals, H,AB
and Hy,2B, where
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Hon™@ = [ ¥2Apq Y HreAdrqA pq)¥ndr (3)
First, we may write
Y2 = aibuts — arbaty
AxpAamye = lablc — |able (4)
Employing the inverse of eq. 2, we find that
AspAamys = 1/y(WAB 4+ WAB) — W ABE (5)
Application of the diatomic hamiltonian Hap yields
HypAszAumyr = [EABUABe + EAB(WABe — 2W;AB¢)] /2
(6)
where EAB and E,A® are the ground singlet and excited
triplet eigenvalues for H,, the internuclear distance of
which corresponds to the distance Rapin H;. We now
use eq. 2 to transform back again to the determinantal

function basis, and then apply the supplementary anti-
symmetrizer 4 45*®

Fapye = [EiAB(|abc| — labe]) +
EAB(labc| + |abe) — 2labe))]/2 (7)

where 3ap = Aap®BHapAapA an).
1 gives

Introducing eq.

Kasy: = [EAB¥ + EAB(2Y, — ¥)]/2 (8)
from which we find that
HiAB = [E*BS); + EAB(2S:: — Su)l/2
Hyp*B = [EABSy + EAB(2S55 — Su)]/2 (9)
where Sim = S ¥o¥ndr,
Similarly it can be shown that
Hasyr = EABY
HKacyr = [EAC(Y — ¥2) + EAN(E + ¥3)] /2
Kper = [EBCW, + EBC(2¥, — ¥,)]/2 (10)
Hacyr = [E1AC(¥ — W) + EAC(Y + )] /2
Kucy: = EBCY,
Hayn = Xpyn = Hcyn = En¥a



